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We present generalizations of classical mechanics and quantum mechanics that 
make it possible to describe N charged extended bodies. In particular, we are 
able to write down a set of coupled equations for the system of N bodies plus 
field. The theory is based on a theory for the description of N charged chemical 
fluid components. 

1. I N T R O D U C T I O N  

How can we justify theoretically the use o f  the Cou lomb  potential  in 
a tomic physics? This is in essence the quest ion motivating our  research, the 
result o f  which is presented in this paper.  The answer could be that one 
should  write down a self-consistent set o f  Maxwell  plus Schr6dinger  
equat ions and then prove that  under  reasonable  boundary  condit ions the 
Cou lomb  potential  appears  (at least as an approximat ion)  in a solution o f  
this system. 

There is an immediate  obstacle to the formulat ion o f  such a system of  
equations.  In fact, Maxwell ' s  e lectromagnetic  field equations are "Euler ian ,"  
i.e., the field quantities are functions on space X = R 3, while the particle 
dynamical  equations are "Lagrangian ,"  i.e., the configurations o f  an N - b o d y  
system is described by N- tup les  ( x l , . . . , x ~ ) ~ X  N. To surmount  this 
difficulty we have assumed that  a charged N - b o d y  system can be given a 
Eulerian description as a system of  N charged chemical  fluid componen ts  
(Aaberge,  1986a,b, 1987) associated with a set o f  bounda ry  condit ions that  
are such that  the chemical  components  are spatially separated. 

This approach  also solves another  problem, that o f  finding candidates  
for what  should  be the charge and current densities for an N - b o d y  quan tum 
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system. They are simply introduced as new independent quantities. This 
procedure is justified by the success of the application of the Coulomb 
potential in the construction of models of atoms, which indicates that even 
an electron or a proton sees the other particle in the hydrogen atom as a 
point particle, whatever the state of the atom. This rules out a possibility 
that otherwise might have been suggested, that the charge densities are 
related to the norm squared of the wave function. 

The state space of a continuum system is a Banach manifold ~ ( ~ )  of 
sections 3': X =~3...> ~ of a fibered manifold ~ :  ~-~X. The (extensive) 
observables of the system are functions F : ~ ( ~ ) - ~ ,  represented as 
integrals F(T)=S~fd3x, where f : J q ( ~ ) ~  is a function on the q-jet 
extension Jq(~) of ~, i.e., of  y and its derivatives up to order q. Finally, 
the equations of motion are represented by ordinary differential equations, 
i.e., by vector felds on Y3(~). These vector fields are specified by a symbol 
X whose components are functions on Jq(~), and a set of boundary condi- 
tions. 

The local extensive observables of the fluid component n are the 
momentum density 7r, i, mass density p,,  and charge density q,. The 
dynamics is assumed to be Hamiltonian, and the symbol for the dynamical 
vector field X H is constructed from the energy function U. As part of the 
boundary conditions, it is assumed that for any moment of time, the support 
of 7rni is contained in the support of pn, i.e., the portion of the space occupied 
by the component n. Because of the separation of space that follows, the 
interaction between the spatially separated components must be simulated 
by the boundary conditions. To do this, we introduce a set of generalized 
irrotational conditions that permit us to establish a potential w for the local 
momentum. The equation of motion w=xH(w) of the potential w, which 
is determined from the original equations of motion, is a priori valid only 
on the portion of space occupied by matter. It can, however, in "natural"  
ways be extended also to the void. We give two extensions. One corresponds 
to the classical N-body system. Then w is identified with the Hamilton- 
Jacobi action function, and the extension of the equation of motion is the 
Hamilton-Jacobi equation. The other extension considered describes the 
system of N quantum bodies. Then w is identified with the phase of the 
wave function and the extension of the equation is the equation for the 
phase as obtained from the Schr6dinger equation. 

2. DEFINITION OF THE SYSTEM 

The state space ~ ( ~ )  of the system is a priori associated with the 
fibered manifold (Aaberge, 1986a,b; Pommaret, 1978; Palais, 1968), 

~ - X  
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where 

g = {(xg; rr,~, p,, %, D ~, B ~) e R 3 x R3N x R+ N x ~6} 

X = {(X i) E ~3} 

but a posteriori subjected to the constraints 

a=O, fl=O, y.=O, h~j=O 

~: J , ( ~ ) ~ ;  ( ')~'->D',i-Eq,, 
n 

d �9 Jl(~)--~ ~ ;  ( . ) ~ . - ~ B  i �9 , i  

. 1 %,: ~..+N; (.)~.._+ l_.~_p,___q,, 

mn en 

for 
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V y  = 3y -- V iOy d + V iVjOy,i  j . . . .  

7Tn i 7"gnj en 
~.~j: J , (~)-~R; ( . ) ~ V s - - - V i  eokB k 

Pn Pn mn 

where m. =SxP. d3x and e. =Sx q. d3x are the total mass and the total 
charge of the nth body, respectively�9 The local extensive observables of 
momentum density ~r.~, mass density p., and charge density q. of the nth 
body and of the electric displacement D i and magnetic induction B ~ are 
represented by the functions ~ ~ R, 

~ , i ( ' )=7r , i ,  f i~ ( ' )=p , ,  ~ ( ' ) = % ,  / 5 ~ ( . ) = D i, / ~ ' ( . ) = B  ~ 

According to the laws of thermodynamics, any (thermodynamic) system is 
associated with an energy function, i.e., in this setting, with an energy 
density (Aaberge, 1986b) 

a: J~(~)--, R 

To give a is equivalent to giving a representation of the intensive observables 
of velocity v~,, chemical potential /x,, and electric potential V~ of the nth 
component, electric field G, and magnetic field Hi. They are represented 
by the functions Jq( ~) --> R, 

�9 A 

V A nA G(.)= ~~ ~.(.)=v~ u(.), vo(.)=-v~a(.) 

L(.)=vD,a(.) ,  /-/X.) =v~,a(.) 

where.V denote the "functional" derivative, i.e., 
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and yj  corresponds to the variable representing the partial derivative of 
y(xi), 

y.i(x') =ax,y(x i) 

3. THE DYNAMICS 

Let ~ be the fibered manifold 

~ = {(x'; u.i, r D', A ' ) c ' '  .}-~X 

and let w denote a symplectic form on the fibers, associated with the symbol 

o2 = ~ duni A d~ in + dAi ^ d D  i 
n 

Moreover, denote by xIt the submersion 

{ j l ( ~ )  [j,p,,_ i - det(~.d) # O} 

--~E = { ,~] O/ =0,  ~ -~'0, ')In : 0 ,  Anij~--O, rl : 1 . . . .  } 

(xi ; u.i, i ,  D i, Ai, u.i,j, ~ i n , j ,  D i2, Aid) 

Di.i-  ~. emj~,,,Xm~ D i, eOkAk.j) 
m 

m # n  

The Hamiltonian of the system is, by assumption, the function 

h: {Jq+,(~)lj~o#O}-.R 

obtained by the pullback of the restriction of Jq(XI t) to {Jq(~)lJ~. # O} of 
the restriction of a to E. 

Proposition 1. The pushforward of the Hamiltonian vector fe ld  

xH = (V~j,]~, --Vu,,i]I, V Ai]-I, --V Di]'I ) 

under xlt has the components 

xn(Tr.i) = -Vj(Trniv~) - 7r.jVivJn - p. Vip.. + q.ViV. + qn(Ei + eijkvJ B k) 

XH(Pn) : --Vi(Pn~)in) 

xH(q.) = - V , ( q . v i . )  

xH(D ') = e'JkVjHk-Z q.v',, 
n 

x"(B') = -~~ 
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Proof The result is obtained by a direct computation, noticing that 

V ~,,/~ = -Vj(u.,v j )  -Vj(e . j~ , ,~ .o~.(~. i ) - lakv~)  

+e.j~,,(Oy~X.)o~.AkV~ -- V j[ m.j~,~.oq~. (~pJ.i)-I/x. ] 

+m,,j~,,(Oy~x,,)o~,,Iz,,- ~, Vj[emj~, xm~ -1Vm] 
m 

rl,l ~ n 

+ Z e,~j~,,(Oy,:Xm)~ 
n l  

m =/= M 

" i j V ~,,,h - q).,jv. 

V D , f = E V , V . + E ,  
n 

V A, fl = V j e ' J k H k - - E  q. vi. 
n 

Proposition 2. The total energy, total momentum, total mass, total 
charge, and total magnetic flux through any closed surface are conserved. 

Proof Computation gives 

xH(u) = -Vi[E (~'.jv j + p.lx. - q.V.)vi. + eOkEjHk] 
n 

XH(Y. ~'.i + eokD yBk) 
n 

= -Vj{Y, r + PJ~ - DJE~ 
n 

-BJHi + 6Ji[ - u  + E ( ~.k vk. + P.~.  -- q. V.) + DkEk + BkHk]} 
n 

where P~ # 0 only if u is effectively a function of ~r.~,j, p . , i , . . . .  The 
expression for P~- is found in Aaberge (1986a, p. 398). 

Proposition 3. The constraints are invariant under the dynamical evol- 
ution, i.e., 

X"(~) =0,  xH(/3) =0, .~H(~n) ~--'0, xn(s =0,  

n = l , 2 , . . . , N  

on the subspace satisfying the constraints k = 0, 0, 3'. = 0, and h .  U = 0 
for all n. 

Proof Direct computation. 
l--I Supplemented with the proper boundary conditions, the symbol X 

defines a vector field that is supposed to describe a system of N charged 
bodies. It is evident that it might be difficult to construct an actual solution 
to such a system. However, we will justify the claim that it might be so by 
specifying some of the boundary conditions that one must assume. 
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4. THE LOCAL M O M E N T U M  POTENTIAL 

The equations of  motion associated with a vector field defined by a 
symbol X n and a set of  boundary conditions contain in principle all the 
information necessary to determine the evolution of the system. In the case 
of  a system of N spatially separated chemical components or bodies, the 
space X is divided into a domain @M that is filled with matter, ~ M =  
[ J .  supp(p.) ,  and a domain @v that is "empty ,"  ~ v  = X/@M. A priori the 
symbol g H might seem to be nonzero on @M only, since we must chose 
r = 0, XH(er.i)(X i) = 0, etc., for x ~  @v. However, g H might also be 
defined by its action on nonvanishing quantities on @v. Thus, for example,  

")(H(-~n) :-- l ' )JvJ"lTnipn 7r'JvivJ-Viix"-q"vig'-k qn Pn Pn 

On E this can be rewritten 

( )+e. 
X H = -Vi vj " zr.;+ Ix. _ - -  V. Ei 

Pn mn mn 

Assume that there exists a function ~: ~ 3 N  .._> ~ (or S 1) such that 

l"lni : (Oy~l - i i w)(~,(x ) , . . . ,  ~'~(x')) 
p. /m.  

Then 

J u 
r  "J-Viw 

~ p . / m . -  

Accordingly, 

v~"(~)  = -v ,  E v ~ - - +  p. /m.  
m . i x .  + e,~ Y, 

m 
m;~n 

i.e., modulo a constant, 

,Ti.ni 
v'o + re.ix~ + e~ 

m 
m ~ n  

or if we specialize to the case where 

6';zr,,i~,,j ~- uo(p., q., D/, B i) 
u ( ' ) = ~  2p. 
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then 

( a~j k .,j(ay, 
, ] ( H ( ~ )  : --~n ~-enA~][~ ~ ) -  Aj] Z 

+e.�89 E,,, Vm+m.t-eo.}. 
m ~ n  

5. THE CLASSICAL AND QUANTUM EXTENSIONS 

The above expression is a formal consequence of the application of 
the symbol X H on the function ~. It is a priori valid on @M; however, we 
may assume an extension of the validity of the symbol as part of  the 
boundary conditions. Thus we may write 

. (2m.  [~'k'i(OY~W) - enAni][q~ln'J(OY['W) - e .An j ]  

1 +mJ.} +e.-~ } Vm,. 
m ~ n  

The potentials A.i are assumed to be solutions of  the Maxwell equations 
on @v, i.e., 

O,Ai = - E i - V i  Y~ Vn ,  O,D i : , ~ i j kV jHk  
n 

where 

Ei = 60 D g, Hi = p.o6ijB j 
EO 

and A.i = Ai on 0 supp(q.) .  Some extra information is needed to establish 
the potentials (Vm,~); in fact, we must evoke the definition of electric field 
strength, extending the definition of V,. =-Vq,,U. Here Vm measures the 
electri~ energy needed to extract an "infinitesimal" amount of  charge from 
the ruth body. I'm,. is assumed to measure the energy needed to separate 
the bodies m and n to their respective positions. Thus, in particular we 
must have 

Vm,. = V,. on 0 supp(q,.)  

V,,,,. = V. on 0 supp(q.)  

Except for the context, these are the standard assumptions used to establish 
a solution of the electromagnetic field equations in the void. 
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5.1. The Classical Case 

Let us assume that f~ =0,  and make a change from "Eulerian" to 
"Lagrangian" variables, i.e., interpret y~,(t) = ~0i,(x ~) as the position of  a 
potential reference point in the nth body at the time t > 0 when (x ~) was 
its position at time t = 0. Moreover, if we then individualize the initial 
positions by putting 

yi.(t) = ~o~,(x~.) 

we obtain the Hamilton-Jacobi equation 

~ r t v,.:] L2m. " 
m # r l  

where 

w ( x D  ' t )  " ' ' ' ' . . . ,  x N ,  = w ( ~ ~  ~ ' M x N ) )  

on ~v- It is therefore quite reasonable to believe that if the extension of 
the bodies is small compared to the distance between them, the motions of 
the bodies follow the characteristics for the above Hamilton-Jacobi 
equation, i.e., satisfy the Hamilton equations 

P.i = -O d,~g 

O~. =op,,,~ 

] 12m.  (p"' - e.A. ,)(p. j  - e,~A.j) E Vm.. 
rvl r tl 

for 

This would thus mean that the bodies essentially follow the standard classical 
motions. 

5.2. The Quantum System 

To describe a quantum system, we choose 

f = _ l  ~ [ k,#p i d(oy~ayj~)odp + ~p k,o(Oy~v/~)o ~ 
2\m./ tV~oQ 

- + 1 VNj jv/~ " 1 +V, In(jr.)  ~0kd(0yj~)~ b] x/jr ~ . j  

where ~ is a "fixed" function 

~: {(yL)cR3N}-,R+ 
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i.e., 

and 

,~H(~) ---- __~j,il.)in(Oyjz~)oO 

alp: R3N~R3N; (~p,,...,~ON)~---~(yl,...,yN) 

is defined by yl = ~a, �9 �9 �9 yN = ~oN. 
Applying the same procedure as for the classical system, we obtain the 

equations 

Otw=-{~n l t~iJ (ox~w-e,,A,,i)(Ox~-e,,A,,j) 
L2m, 

1 1 h 2 6 0. _ ] )  
+en-~ E vm. - =  ox,ox,~/x I ? -~ 2 rn,, ~,l . . . . .  _l J 

mr 

on ~v.  Notice that 

N ( X I , . . .  , XN, t )=j~ol , (XI ) . . . jg ,  N , (XN)~(q~l t (X l ) , . . . ,  q~Nt(XN)) 

It is well known that these equations give rise to the Schr6dinger equation 

ih.[~-~m.~7Og, e .A . j )+e.  1 Vm. 
m~n 

for the wave function 

In this case w'-N3N.-.>S 1. 

6. CONCLUSION 

It is obvious that the theory thus presented is a direct generalization 
of quantum mechanics, and as such is based on the same experimental 
foundations. It is richer, however, and this permits us to make theoretical 
connections outside the scope of quantum mechanics. In particular, this 
theory opens up the possibility of giving a theoretical justification for the 
models used in atomic physics. 

The theory might also have some consequences for the interpretation 
of quantum mechanics. In fact, since the very beginning the interpretation 
of quantum mechanics has been obscured by a lost dichotomy between 
matter and information, which was emphasized by the discussion between 
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Einstein and Bohr. The extension of the framework of quantum theory that 
is presented in this paper introduces this dichotomy and opens up the 
possibility of resolving some of the quantum mechanical paradoxes. 

In this respect one may tentatively suggest that the matter aspect is 
entirely described by the fluid dynamical quantities, and that the f , ' s  or 
rather x is determined by the "experimental conditions" under which the 
system is observed. If the expression "experimental conditions" is inter- 
preted in a broad sense, including also, by transposition, the possibility that 
it is in some sense in the nature of a nontrivial quantum system to create 
these conditions by itself, this would explain why it is possible to claim 
that the wave function describes the state of the system. 

It might be possible to solve some old and almost forgotten problems 
by applying the ideas presented above. However, this theory also gives rise 
to new problems. In particular, one would like to have a theoretical jus- 
tification for the form chosen for fn. In fact, our choice has been dictated 
by the result we wanted to obtain. 

ACKNOWLEDGEMENT 

I am indebted to C. Piron for numerous discussions on these subjects. 
I also thank the members of the D6partement de Physique Th6orique for 
warm hospitality, and the Fonds National Suisse for support. 

REFERENCES 

Aaberge, T. (1986a). Helvetica Physica Acta, 59, 390-409. 
Aaberge, T. (1986b). Preprint, UGVA-DPT 1985/11-484. 
Aaberge, T. (1987). International Journal of Theoretical Physics, 26, 697-706. 
Palais, R. S. (1968). Foundations of Global Non-linear Analysis, Benjamin, New York. 
Pommaret, J. F. (1978). Systems of Partial Differential Equations and Lie Pseudogroups, Gordon 

and Breach, New York. 


